Invest in DP-100 Dumps (V22.02) to Prepare for the Designing and Implementing a Data Science Solution on Azure Exam: DP-100 Free Dumps (Part 3, Q81-Q120) Are Available for Checking

Invest in DP-100 dumps (V22.02) to prepare for your Designing and Implementing a Data Science Solution on Azure exam now. DumpsBase’s DP-100 dumps (V22.02) contain the most current exam questions that have been validated by IT professionals who have already passed the exam. You can search that we have shared the DP-100 free dumps online for checking:

After checking these demos, you can know that our dumps cover all domains and topics that are included in the actual Designing and Implementing a Data Science Solution on Azure exam. Trust, with DumpsBase’s DP-100 dumps, you can pass your exam on the first attempt. Continue reading. We will share more demos online.

Microsoft DP-100 free dumps (Part 3, Q81-Q100) of V22.02 are below:

1. You must store data in Azure Blob Storage to support Azure Machine Learning.

You need to transfer the data into Azure Blob Storage.

What are three possible ways to achieve the goal? Each correct answer presents a complete solution. NOTE: Each correct selection is worth one point.

2. You are moving a large dataset from Azure Machine Learning Studio to a Weka environment.

You need to format the data for the Weka environment.

Which module should you use?

3. You plan to deliver a hands-on workshop to several students. The workshop will focus on creating data visualizations using Python. Each student will use a device that has internet access.

Student devices are not configured for Python development. Students do not have administrator access to install software on their devices. Azure subscriptions are not available for students. You need to ensure that students can run Python-based data visualization code.

Which Azure tool should you use?

4. Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.

After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.

You are analyzing a numerical dataset which contains missing values in several columns.

You must clean the missing values using an appropriate operation without affecting the dimensionality of the feature set.

You need to analyze a full dataset to include all values.

Solution: Calculate the column median value and use the median value as the replacement for any missing value in the column.

Does the solution meet the goal?

5. Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.

After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.

You are a data scientist using Azure Machine Learning Studio.

You need to normalize values to produce an output column into bins to predict a target column.

Solution: Apply a Quantiles binning mode with a PQuantile normalization.

Does the solution meet the goal?

6. HOTSPOT

You create an experiment in Azure Machine Learning Studio. You add a training dataset that contains 10,000 rows. The first 9,000 rows represent class 0 (90 percent).

The remaining 1,000 rows represent class 1 (10 percent).

The training set is imbalances between two classes. You must increase the number of training examples for class 1 to 4,000 by using 5 data rows. You add the Synthetic Minority Oversampling Technique (SMOTE) module to the experiment.

You need to configure the module.

Which values should you use? To answer, select the appropriate options in the dialog box in the answer area. NOTE: Each correct selection is worth one point.

7. You are solving a classification task.

You must evaluate your model on a limited data sample by using k-fold cross validation. You start by

configuring a k parameter as the number of splits.

You need to configure the k parameter for the cross-validation.

Which value should you use?

8. DRAG DROP

You are creating an experiment by using Azure Machine Learning Studio.

You must divide the data into four subsets for evaluation. There is a high degree of missing values in the data. You must prepare the data for analysis.

You need to select appropriate methods for producing the experiment.

Which three modules should you run in sequence? To answer, move the appropriate actions from the list of actions to the answer area and arrange them in the correct order. NOTE: More than one order of answer choices is correct. You will receive credit for any of the correct orders you select.

9. HOTSPOT

You are retrieving data from a large datastore by using Azure Machine Learning Studio.

You must create a subset of the data for testing purposes using a random sampling seed based on the system clock.

You add the Partition and Sample module to your experiment.

You need to select the properties for the module.

Which values should you select? To answer, select the appropriate options in the answer area. NOTE: Each correct selection is worth one point.

10. You are creating a machine learning model. You have a dataset that contains null rows.

You need to use the Clean Missing Data module in Azure Machine Learning Studio to identify and resolve the null and missing data in the dataset.

Which parameter should you use?

11. DRAG DROP

You are analyzing a raw dataset that requires cleaning.

You must perform transformations and manipulations by using Azure Machine Learning Studio.

You need to identify the correct modules to perform the transformations.

Which modules should you choose? To answer, drag the appropriate modules to the correct scenarios. Each module may be used once, more than once, or not at all.

You may need to drag the split bar between panes or scroll to view content. NOTE: Each correct selection is worth one point.

12. HOTSPOT

You have a Python data frame named salesData in the following format:

The data frame must be unpivoted to a long data format as follows:

You need to use the pandas.melt() function in Python to perform the transformation.

How should you complete the code segment? To answer, select the appropriate options in the answer area. NOTE: Each correct selection is worth one point.

13. HOTSPOT

You are working on a classification task. You have a dataset indicating whether a student would like to play soccer and associated attributes.

The dataset includes the following columns:

You need to classify variables by type.

Which variable should you add to each category? To answer, select the appropriate options in the answer area. NOTE: Each correct selection is worth one point.

14. HOTSPOT

You plan to preprocess text from CSV files. You load the Azure Machine Learning Studio default stop words list.

You need to configure the Preprocess Text module to meet the following requirements:

✑ Ensure that multiple related words from a single canonical form.

✑ Remove pipe characters from text.

✑ Remove words to optimize information retrieval.

Which three options should you select? To answer, select the appropriate options in the answer area. NOTE: Each correct selection is worth one point.

15. You are performing feature engineering on a dataset.

You must add a feature named CityName and populate the column value with the text London.

You need to add the new feature to the dataset.

Which Azure Machine Learning Studio module should you use?

16. HOTSPOT

You have a dataset created for multiclass classification tasks that contains a normalized numerical feature set with 10,000 data points and 150 features.

You use 75 percent of the data points for training and 25 percent for testing. You are using the scikit-learn machine learning library in Python. You use X to denote the feature set and Y to denote class labels.

You create the following Python data frames:

You need to apply the Principal Component Analysis (PCA) method to reduce the dimensionality of the feature set to 10 features in both training and testing sets.

How should you complete the code segment? To answer, select the appropriate options in the answer area. NOTE: Each correct selection is worth one point.

17. HOTSPOT

You have a feature set containing the following numerical features: X, Y, and Z.

The Poisson correlation coefficient (r-value) of X, Y, and Z features is shown in the following image:

Use the drop-down menus to select the answer choice that answers each question based on the information presented in the graphic. NOTE: Each correct selection is worth one point.

18. HOTSPOT

You are performing feature scaling by using the scikit-learn Python library for x.1 x2, and x3 features.

Original and scaled data is shown in the following image.

Use the drop-down menus to select the answer choice that answers each question based on the information presented in the graphic. NOTE: Each correct selection is worth one point.

19. Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.

After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.

You are creating a model to predict the price of a student’s artwork depending on the following variables: the student’s length of education, degree type, and art form.

You start by creating a linear regression model.

You need to evaluate the linear regression model.

Solution: Use the following metrics: Mean Absolute Error, Root Mean Absolute Error, Relative Absolute Error, Relative Squared Error, and the Coefficient of Determination.

Does the solution meet the goal?

20. Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.

After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.

You are creating a model to predict the price of a student’s artwork depending on the following variables: the student’s length of education, degree type, and art form.

You start by creating a linear regression model.

You need to evaluate the linear regression model.

Solution: Use the following metrics: Accuracy, Precision, Recall, F1 score and AUC.

Does the solution meet the goal?

21. Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.

After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.

You are creating a model to predict the price of a student’s artwork depending on the following variables: the student’s length of education, degree type, and art form.

You start by creating a linear regression model.

You need to evaluate the linear regression model.

Solution: Use the following metrics: Relative Squared Error, Coefficient of Determination, Accuracy, Precision, Recall, F1 score, and AUC.

Does the solution meet the goal?

22. You are creating a binary classification by using a two-class logistic regression model.

You need to evaluate the model results for imbalance.

Which evaluation metric should you use?

23. HOTSPOT

You are developing a linear regression model in Azure Machine Learning Studio. You run an experiment to compare different algorithms.

The following image displays the results dataset output:

Use the drop-down menus to select the answer choice that answers each question based on the information presented in the image. NOTE: Each correct selection is worth one point.

24. HOTSPOT

You are using a decision tree algorithm. You have trained a model that generalizes well at a tree depth equal to 10.

You need to select the bias and variance properties of the model with varying tree depth values.

Which properties should you select for each tree depth? To answer, select the appropriate options in the answer area.

25. DRAG DROP

You have a model with a large difference between the training and validation error values.

You must create a new model and perform cross-validation.

You need to identify a parameter set for the new model using Azure Machine Learning Studio.

Which module you should use for each step? To answer, drag the appropriate modules to the correct steps. Each module may be used once or more than once, or not at all. You may need to drag the split bar between panes or scroll to view content. NOTE: Each correct selection is worth one point.

26. HOTSPOT

You are using C-Support Vector classification to do a multi-class classification with an unbalanced training dataset.

The C-Support Vector classification using Python code shown below:

You need to evaluate the C-Support Vector classification code.

Which evaluation statement should you use? To answer, select the appropriate options in the answer area. NOTE: Each correct selection is worth one point.

27. You are building a machine learning model for translating English language textual content into French language textual content.

You need to build and train the machine learning model to learn the sequence of the textual content.

Which type of neural network should you use?

28. You create a binary classification model.

You need to evaluate the model performance.

Which two metrics can you use? Each correct answer presents a complete solution. NOTE: Each correct selection is worth one point.

29. You use the Two-Class Neural Network module in Azure Machine Learning Studio to build a binary classification model. You use the Tune Model Hyperparameters module to tune accuracy for the model.

You need to select the hyperparameters that should be tuned using the Tune Model Hyperparameters module.

Which two hyperparameters should you use? Each correct answer presents part of the solution. NOTE: Each correct selection is worth one point.

30. HOTSPOT

You are evaluating a Python NumPy array that contains six data points defined as follows:

data = [10, 20, 30, 40, 50, 60]

You must generate the following output by using the k-fold algorithm implantation in the Python Scikit-learn machine learning library:

train: [10 40 50 60], test: [20 30]

train: [20 30 40 60], test: [10 50]

train: [10 20 30 50], test: [40 60]

You need to implement a cross-validation to generate the output.

How should you complete the code segment? To answer, select the appropriate code segment in the dialog box in the answer area. NOTE: Each correct selection is worth one point.

31. You create a binary classification model by using Azure Machine Learning Studio.

You must tune hyperparameters by performing a parameter sweep of the model.

The parameter sweep must meet the following requirements:

iterate all possible combinations of hyperparameters minimize computing resources required to perform the sweep You need to perform a parameter sweep of the model.

Which parameter sweep mode should you use?

32. HOTSPOT

You are analyzing the asymmetry in a statistical distribution.

The following image contains two density curves that show the probability distribution of two datasets.

Use the drop-down menus to select the answer choice that answers each question based on the information presented in the graphic. NOTE: Each correct selection is worth one point.

33. Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.

After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.

You are creating a new experiment in Azure Machine Learning Studio.

One class has a much smaller number of observations than the other classes in the training set.

You need to select an appropriate data sampling strategy to compensate for the class imbalance.

Solution: You use the Stratified split for the sampling mode.

Does the solution meet the goal?

34. Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.

After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.

You are creating a model to predict the price of a student’s artwork depending on the following variables: the student’s length of education, degree type, and art form.

You start by creating a linear regression model.

You need to evaluate the linear regression model.

Solution: Use the following metrics: Mean Absolute Error, Root Mean Absolute Error, Relative Absolute Error, Accuracy, Precision, Recall, F1 score, and AUC.

Does the solution meet the goal?

35. You arc creating a new experiment in Azure Machine Learning Studio. You have a small dataset that has missing values in many columns. The data does not require the application of predictors for each column. You plan to use the Clean Missing Data module to handle the missing data.

You need to select a data cleaning method.

Which method should you use?

36. You are evaluating a completed binary classification machine.

You need to use the precision as the evaluation metric.

Which visualization should you use?

37. You are building a recurrent neural network to perform a binary classification. You review the training loss, validation loss, training accuracy, and validation accuracy for each training epoch.

You need to analyze model performance.

Which observation indicates that the classification model is over fitted?

38. You use Azure Machine Learning Studio to build a machine learning experiment.

You need to divide data into two distinct datasets.

Which module should you use?

39. You are solving a classification task.

You must evaluate your model on a limited data sample by using k-fold cross-validation. You start by configuring a k parameter as the number of splits.

You need to configure the k parameter for the cross-validation.

Which value should you use?

40. You train a machine learning model.

You must deploy the model as a real-time inference service for testing. The service requires low CPU utilization and less than 48 MB of RAM. The compute target for the deployed service must initialize automatically while minimizing cost and administrative overhead.

Which compute target should you use?


 

 

Studying PL-300 Dumps (V17.02) to Master Your Microsoft Power BI Data Analyst Exam: Read PL-300 Free Dumps (Part 1, Q1-Q40) Online
Prepare Effectively with the Most Current DP-100 Dumps (V22.02): Check the DP-100 Free Dumps (Part 2, Q41-Q80) Online

Add a Comment

Your email address will not be published. Required fields are marked *