Microsoft DP-100 Dumps (V23.02) Elevate Your Success: Reading DP-100 Free Dumps (Part 3, Q81-Q120) Online to Check More

You can take your career to new heights with the Microsoft Certified: Azure Data Scientist Associate certification, so you must pass the DP-100 exam successfully. DumpsBase provides the most updated DP-100 dumps (V23.02), guaranteeing your success on the first attempt. You can feel the quality of V23.02 by reading our free dumps:

From these free dumps, you can find that our DP-100 dumps (V23.02) will allow you to complete the actual exam with actual questions and correct answers. Repeated practice with our DP-100 exam questions ensures you’re ready to clear the Designing and Implementing a Data Science Solution on Azure exam on your first attempt. Today, we will continue to share more free dumps for checking.

Reading DP-100 free dumps (Part 3, Q81-Q120) of V23.02 below:

1. You are solving a classification task.

You must evaluate your model on a limited data sample by using k-fold cross-validation. You start by configuring a k parameter as the number of splits.

You need to configure the k parameter for the cross-validation.

Which value should you use?

2. HOTSPOT

You need to configure the Feature Based Feature Selection module based on the experiment requirements and datasets.

How should you configure the module properties? To answer, select the appropriate options in the dialog box in the answer area. NOTE: Each correct selection is worth one point.

3. You plan to use a Deep Learning Virtual Machine (DLVM) to train deep learning models using Compute Unified Device Architecture (CUDA) computations.

You need to configure the DLVM to support CUDA.

What should you implement?

4. You plan to build a team data science environment. Data for training models in machine learning pipelines will be over 20 GB in size.

You have the following requirements:

✑ Models must be built using Caffe2 or Chainer frameworks.

✑ Data scientists must be able to use a data science environment to build the machine learning pipelines and train models on their personal devices in both connected and disconnected network environments.

✑ Personal devices must support updating machine learning pipelines when connected to a network.

You need to select a data science environment.

Which environment should you use?

5. HOTSPOT

You are using the Azure Machine Learning Service to automate hyperparameter exploration of your neural network classification model.

You must define the hyperparameter space to automatically tune hyperparameters using random sampling according to following requirements:

The learning rate must be selected from a normal distribution with a mean value of 10 and a standard deviation of 3.

Batch size must be 16, 32 and 64.

Keep probability must be a value selected from a uniform distribution between the range of 0.05 and 0.1.

You need to use the param_sampling method of the Python API for the Azure Machine Learning Service.

How should you complete the code segment? To answer, select the appropriate options in the answer area. NOTE: Each correct selection is worth one point.

6. You need to select a feature extraction method.

Which method should you use?

7. You are creating a new experiment in Azure Machine Learning Studio. You have a small dataset that has missing values in many columns. The data does not require the application of predictors for each column. You plan to use the Clean Missing Data module to handle the missing data.

You need to select a data cleaning method.

Which method should you use?

8. You plan to create a speech recognition deep learning model.

The model must support the latest version of Python.

You need to recommend a deep learning framework for speech recognition to include in the Data Science Virtual Machine (DSVM).

What should you recommend?

9. Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.

After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.

You are analyzing a numerical dataset which contains missing values in several columns.

You must clean the missing values using an appropriate operation without affecting the dimensionality of the feature set.

You need to analyze a full dataset to include all values.

Solution: Remove the entire column that contains the missing data point.

Does the solution meet the goal?

10. HOTSPOT

You are retrieving data from a large datastore by using Azure Machine Learning Studio.

You must create a subset of the data for testing purposes using a random sampling seed based on the system clock.

You add the Partition and Sample module to your experiment.

You need to select the properties for the module.

Which values should you select? To answer, select the appropriate options in the answer area. NOTE: Each correct selection is worth one point.

11. DRAG DROP

You have a model with a large difference between the training and validation error values.

You must create a new model and perform cross-validation.

You need to identify a parameter set for the new model using Azure Machine Learning Studio.

Which module you should use for each step? To answer, drag the appropriate modules to the correct steps. Each module may be used once or more than once, or not at all. You may need to drag the split bar between panes or scroll to view content. NOTE: Each correct selection is worth one point.

12. Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.

After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.

You are creating a model to predict the price of a student’s artwork depending on the following variables: the student’s length of education, degree type, and art form.

You start by creating a linear regression model.

You need to evaluate the linear regression model.

Solution: Use the following metrics: Mean Absolute Error, Root Mean Absolute Error, Relative Absolute Error, Accuracy, Precision, Recall, F1 score, and AUC.

Does the solution meet the goal?

13. HOTSPOT

You are developing a machine learning, experiment by using Azure.

The following images show the input and output of a machine learning experiment:

Use the drop-down menus to select the answer choice that answers each question based on the information presented in the graphic. NOTE: Each correct selection is worth one point.

14. You are developing a hands-on workshop to introduce Docker for Windows to attendees.

You need to ensure that workshop attendees can install Docker on their devices.

Which two prerequisite components should attendees install on the devices? Each correct answer presents part of the solution. NOTE: Each correct selection is worth one point.

15. DRAG DROP

You need to define an evaluation strategy for the crowd sentiment models.

Which three actions should you perform in sequence? To answer, move the appropriate actions from the list of actions to the answer area and arrange them in the correct order.

16. You are a data scientist building a deep convolutional neural network (CNN) for image classification.

The CNN model you built shows signs of overfitting.

You need to reduce overfitting and converge the model to an optimal fit.

Which two actions should you perform? Each correct answer presents a complete solution. NOTE: Each correct selection is worth one point.

17. HOTSPOT

You need to configure the Permutation Feature Importance module for the model training requirements.

What should you do? To answer, select the appropriate options in the dialog box in the answer area. NOTE: Each correct selection is worth one point.

18. Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.

After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.

You are creating a new experiment in Azure Learning learning Studio.

One class has a much smaller number of observations than the other classes in the training

You need to select an appropriate data sampling strategy to compensate for the class imbalance.

Solution: You use the Synthetic Minority Oversampling Technique (SMOTE) sampling mode.

Does the solution meet the goal?

19. DRAG DROP

You are analyzing a raw dataset that requires cleaning.

You must perform transformations and manipulations by using Azure Machine Learning Studio.

You need to identify the correct modules to perform the transformations.

Which modules should you choose? To answer, drag the appropriate modules to the correct scenarios. Each module may be used once, more than once, or not at all.

You may need to drag the split bar between panes or scroll to view content. NOTE: Each correct selection is worth one point.

20. You use the Two-Class Neural Network module in Azure Machine Learning Studio to build a binary

classification model. You use the Tune Model Hyperparameters module to tune accuracy for the model.

You need to select the hyperparameters that should be tuned using the Tune Model Hyperparameters module.

Which two hyperparameters should you use? Each correct answer presents part of the solution. NOTE: Each correct selection is worth one point.

21. HOTSPOT

You are analyzing the asymmetry in a statistical distribution.

The following image contains two density curves that show the probability distribution of two datasets.

Use the drop-down menus to select the answer choice that answers each question based on the information presented in the graphic. NOTE: Each correct selection is worth one point.

22. DRAG DROP

You are producing a multiple linear regression model in Azure Machine Learning Studio.

Several independent variables are highly correlated.

You need to select appropriate methods for conducting effective feature engineering on all the data.

Which three actions should you perform in sequence? To answer, move the appropriate actions from the list of actions to the answer area and arrange them in the correct order.

23. You need to select a pre built development environment for a series of data science experiments. You must use the R language for the experiments.

Which three environments can you use? Each correct answer presents a complete solution. NOTE: Each correct selection is worth one point.

24. HOTSPOT

You have a feature set containing the following numerical features: X, Y, and Z.

The Poisson correlation coefficient (r-value) of X, Y, and Z features is shown in the following image:

Use the drop-down menus to select the answer choice that answers each question based on the information presented in the graphic. NOTE: Each correct selection is worth one point.

25. DRAG DROP

You are creating an experiment by using Azure Machine Learning Studio.

You must divide the data into four subsets for evaluation. There is a high degree of missing values in the data. You must prepare the data for analysis.

You need to select appropriate methods for producing the experiment.

Which three modules should you run in sequence? To answer, move the appropriate actions from the list of actions to the answer area and arrange them in the correct order. NOTE: More than one order of answer choices is correct. You will receive credit for any of the correct orders you select.

26. You are building recurrent neural network to perform a binary classification.

The training loss, validation loss, training accuracy, and validation accuracy of each training epoch has been provided. You need to identify whether the classification model is over fitted.

Which of the following is correct?

27. HOTSPOT

You need to set up the Permutation Feature Importance module according to the model training requirements.

Which properties should you select? To answer, select the appropriate options in the answer area. NOTE: Each correct selection is worth one point.

28. You are building a regression model tot estimating the number of calls during an event.

You need to determine whether the feature values achieve the conditions to build a Poisson regression model.

Which two conditions must the feature set contain? I ach correct answer presents part of the solution. NOTE: Each correct selection is worth one point.

29. HOTSPOT

You have a Python data frame named salesData in the following format:

The data frame must be unpivoted to a long data format as follows:

You need to use the pandas.melt() function in Python to perform the transformation.

How should you complete the code segment? To answer, select the appropriate options in the answer area. NOTE: Each correct selection is worth one point.

30. You are building a binary classification model by using a supplied training set.

The training set is imbalanced between two classes.

You need to resolve the data imbalance.

What are three possible ways to achieve this goal? Each correct answer presents a complete solution NOTE: Each correct selection is worth one point.

31. Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.

After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.

You are analyzing a numerical dataset which contains missing values in several columns.

You must clean the missing values using an appropriate operation without affecting the dimensionality of the feature set.

You need to analyze a full dataset to include all values.

Solution: Calculate the column median value and use the median value as the replacement for any missing value in the column.

Does the solution meet the goal?

32. DRAG DROP

You need to visually identify whether outliers exist in the Age column and quantify the outliers before the outliers are removed.

Which three Azure Machine Learning Studio modules should you use in sequence? To answer, move the appropriate modules from the list of modules to the answer area and arrange them in the correct order.

33. You plan to deliver a hands-on workshop to several students. The workshop will focus on creating data

visualizations using Python. Each student will use a device that has internet access.

Student devices are not configured for Python development. Students do not have administrator access to install software on their devices. Azure subscriptions are not available for students. You need to ensure that students can run Python-based data visualization code.

Which Azure tool should you use?

34. HOTSPOT

You have a dataset created for multiclass classification tasks that contains a normalized numerical feature set with 10,000 data points and 150 features.

You use 75 percent of the data points for training and 25 percent for testing. You are using the scikit-learn machine learning library in Python. You use X to denote the feature set and Y to denote class labels.

You create the following Python data frames:

You need to apply the Principal Component Analysis (PCA) method to reduce the dimensionality of the feature set to 10 features in both training and testing sets.

How should you complete the code segment? To answer, select the appropriate options in the answer area. NOTE: Each correct selection is worth one point.

35. Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.

After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.

You are creating a new experiment in Azure Machine Learning Studio.

One class has a much smaller number of observations than tin- other classes in the training set.

You need to select an appropriate data sampling strategy to compensate for the class imbalance.

Solution: You use the Principal Components Analysis (PCA) sampling mode.

Does the solution meet the goal?

36. You use Azure Machine Learning Studio to build a machine learning experiment.

You need to divide data into two distinct datasets.

Which module should you use?

37. You are developing deep learning models to analyze semi-structured, unstructured, and structured data types.

You have the following data available for model building:

✑ Video recordings of sporting events

✑ Transcripts of radio commentary about events

✑ Logs from related social media feeds captured during sporting events

You need to select an environment for creating the model.

Which environment should you use?

38. DRAG DROP

You need to correct the model fit issue.

Which three actions should you perform in sequence? To answer, move the appropriate actions from the list of actions to the answer area and arrange them in the correct order.

39. HOTSPOT

You are performing sentiment analysis using a CSV file that includes 12,000 customer reviews written in a short sentence format. You add the CSV file to Azure Machine Learning Studio and configure it as the starting point dataset of an experiment. You add the Extract N-Gram Features from Text module to the experiment to extract key phrases from the customer review column in the dataset.

You must create a new n-gram dictionary from the customer review text and set the maximum n-gram size to trigrams.

What should you select? To answer, select the appropriate options in the answer area. NOTE: Each correct selection is worth one point.

40. You are conducting feature engineering to prepuce data for further analysis.

The data includes seasonal patterns on inventory requirements.

You need to select the appropriate method to conduct feature engineering on the data.

Which method should you use?


 

AZ-800 Exam Dumps (V20.02) Are Essential: Continue to Read AZ-800 Free Dumps (Part 3, Q81-100) to Check the Quality
Microsoft MS-700 Practice Test (V20.02) with Real Dump Questions: Learn MS-700 Free Dumps (Part 3, Q81-Q120) Online

Add a Comment

Your email address will not be published. Required fields are marked *