DumpsBase MLS-C01 Dumps (V13.02): Continue to Read the MLS-C01 Free Dumps (Part 3, Q81-Q120) Today

If you are preparing for the AWS Certified Machine Learning – Specialty (MLS-C01) exam, DumpsBase offers the most updated and reliable learning resources to ensure your success. At DumpsBase, you can get the most updated MLS-C01 dumps (V13.02) that match the latest syllabus and exam structure, helping you save time and focus on what really matters. You can read our free dumps to verify the V13.02 first:

From these sample questions online, you can find that the MLS-C01 dumps (V13.02) give you the real exam questions in a real test experience, allowing you to evaluate your knowledge and identify improvement areas. You can check the reviews; thousands of professionals have already passed their MLS-C01 exam using DumpsBase’s trusted materials. If you want to check more demos, come to read and test today.

Continue to read our MLS-C01 free dumps (Part 3, Q81-Q120) of V13.02 below:

1. A global financial company is using machine learning to automate its loan approval process. The company has a dataset of customer information. The dataset contains some categorical fields, such as customer location by city and housing status. The dataset also includes financial fields in different units, such as account balances in US dollars and monthly interest in US cents.

The company’s data scientists are using a gradient boosting regression model to infer the credit score for each customer. The model has a training accuracy of 99% and a testing accuracy of 75%. The data scientists want to improve the model’s testing accuracy.

Which process will improve the testing accuracy the MOST?

2. A Machine Learning Specialist is developing recommendation engine for a photography blog Given a picture, the recommendation engine should show a picture that captures similar objects The Specialist would like to create a numerical representation feature to perform nearest-neighbor searches

What actions would allow the Specialist to get relevant numerical representations?

3. A data scientist uses Amazon SageMaker Data Wrangler to obtain a feature summary from a dataset that the data scientist imported from Amazon S3. The data scientist notices that the prediction power

for a dataset feature has a score of 1.

What is the cause of the score?

4. A machine learning (ML) specialist is building a credit score model for a financial institution. The ML specialist has collected data for the previous 3 years of transactions and third-party metadata that is related to the transactions.

After the ML specialist builds the initial model, the ML specialist discovers that the model has low accuracy for both the training data and the test data. The ML specialist needs to improve the accuracy of the model.

Which solutions will meet this requirement? (Select TWO.)

5. A growing company has a business-critical key performance indicator (KPI) for the uptime of a machine learning (ML) recommendation system. The company is using Amazon SageMaker hosting services to develop a recommendation model in a single Availability Zone within an AWS Region. A machine learning (ML) specialist must develop a solution to achieve high availability. The solution must have a recovery time objective (RTO) of 5 minutes.

Which solution will meet these requirements with the LEAST effort?

6. Example Corp has an annual sale event from October to December. The company has sequential sales data from the past 15 years and wants to use Amazon ML to predict the sales for this year's upcoming event.

Which method should Example Corp use to split the data into a training dataset and evaluation dataset?

7. A machine learning (ML) specialist is using Amazon SageMaker hyperparameter optimization (HPO) to improve a model’s accuracy. The learning rate parameter is specified in the following HPO configuration:

During the results analysis, the ML specialist determines that most of the training jobs had a learning rate between 0.01 and 0.1. The best result had a learning rate of less than 0.01. Training jobs need to run regularly over a changing dataset. The ML specialist needs to find a tuning mechanism that uses different learning rates more evenly from the provided range between MinValue and MaxValue.

Which solution provides the MOST accurate result?

8. A monitoring service generates 1 TB of scale metrics record data every minute A Research team performs queries on this data using Amazon Athena The queries run slowly due to the large volume of data, and the team requires better performance

How should the records be stored in Amazon S3 to improve query performance?

9. A Machine Learning Specialist is using Amazon Sage Maker to host a model for a highly available customer-facing application.

The Specialist has trained a new version of the model, validated it with historical data, and now wants to deploy it to production. To limit any risk of a negative customer experience, the Specialist wants to be able to monitor the model and roll it back, if needed

What is the SIMPLEST approach with the LEAST risk to deploy the model and roll it back, if needed?

10. A Machine Learning Specialist works for a credit card processing company and needs to predict which transactions may be fraudulent in near-real time. Specifically, the Specialist must train a model that returns the probability that a given transaction may fraudulent.

How should the Specialist frame this business problem?

11. An office security agency conducted a successful pilot using 100 cameras installed at key locations within the main office. Images from the cameras were uploaded to Amazon S3 and tagged using Amazon Rekognition, and the results were stored in Amazon ES. The agency is now looking to expand the pilot into a full production system using thousands of video cameras in its office locations globally. The goal is to identify activities performed by non-employees in real time.

Which solution should the agency consider?

12. An aircraft engine manufacturing company is measuring 200 performance metrics in a time-series. Engineers want to detect critical manufacturing defects in near-real time during testing. All of the data needs to be stored for offline analysis.

What approach would be the MOST effective to perform near-real time defect detection?

13. A machine learning specialist is developing a proof of concept for government users whose primary concern is security. The specialist is using Amazon SageMaker to train a convolutional neural network (CNN) model for a photo classifier application. The specialist wants to protect the data so that it cannot be accessed and transferred to a remote host by malicious code accidentally installed on the training container.

Which action will provide the MOST secure protection?

14. A company wants to classify user behavior as either fraudulent or normal. Based on internal research, a Machine Learning Specialist would like to build a binary classifier based on two features: age of account and transaction month. The class distribution for these features is illustrated in the figure provided.

Based on this information, which model would have the HIGHEST recall with respect to the fraudulent class?

15. An Amazon SageMaker notebook instance is launched into Amazon VPC. The SageMaker notebook references data contained in an Amazon S3 bucket in another account The bucket is encrypted using SSE-KMS The instance returns an access denied error when trying to access data in Amazon S3.

Which of the following are required to access the bucket and avoid the access denied error? (Select THREE)

16. A developer at a retail company is creating a daily demand forecasting model. The company stores the historical hourly demand data in an Amazon S3 bucket. However, the historical data does not include demand data for some hours.

The developer wants to verify that an autoregressive integrated moving average (ARIMA) approach will be a suitable model for the use case.

How should the developer verify the suitability of an ARIMA approach?

17. A Machine Learning Specialist kicks off a hyperparameter tuning job for a tree-based ensemble model using Amazon SageMaker with Area Under the ROC Curve (AUC) as the objective metric This workflow will eventually be deployed in a pipeline that retrains and tunes hyperparameters each night to model click-through on data that goes stale every 24 hours

With the goal of decreasing the amount of time it takes to train these models, and ultimately to decrease costs, the Specialist wants to reconfigure the input hyperparameter range(s).

Which visualization will accomplish this?

18. A machine learning (ML) specialist at a retail company must build a system to forecast the daily sales for one of the company's stores. The company provided the ML specialist with sales data for this store from the past 10 years. The historical dataset includes the total amount of sales on each day for the store. Approximately 10% of the days in the historical dataset are missing sales data.

The ML specialist builds a forecasting model based on the historical dataset. The specialist discovers that the model does not meet the performance standards that the company requires.

Which action will MOST likely improve the performance for the forecasting model?

19. A Data Scientist is developing a machine learning model to classify whether a financial transaction is fraudulent. The labeled data available for training consists of 100,000 non-fraudulent observations and 1,000 fraudulent observations.

The Data Scientist applies the XGBoost algorithm to the data, resulting in the following confusion matrix when the trained model is applied to a previously unseen validation dataset.

The accuracy of the model is 99.1%, but the Data Scientist has been asked to reduce the number of false negatives.

Which combination of steps should the Data Scientist take to reduce the number of false positive predictions by the model? (Select TWO.)

20. A company wants to predict the classification of documents that are created from an application. New documents are saved to an Amazon S3 bucket every 3 seconds. The company has developed three versions of a machine learning (ML) model within Amazon SageMaker to classify document text. The company wants to deploy these three versions to predict the classification of each document.

Which approach will meet these requirements with the LEAST operational overhead?

21. An agency collects census information within a country to determine healthcare and social program needs by province and city. The census form collects responses for approximately 500 questions from each citizen

Which combination of algorithms would provide the appropriate insights? (Select TWO)

22. A retail company wants to update its customer support system. The company wants to implement automatic routing of customer claims to different queues to prioritize the claims by category. Currently, an operator manually performs the category assignment and routing. After the operator classifies and routes the claim, the company stores the claim’s record in a central database. The claim’s record includes the claim’s category.

The company has no data science team or experience in the field of machine learning (ML). The company’s small development team needs a solution that requires no ML expertise.

Which solution meets these requirements?

23. A Machine Learning Specialist works for a credit card processing company and needs to predict which transactions may be fraudulent in near-real time. Specifically, the Specialist must train a model that

returns the probability that a given transaction may be fraudulent.

How should the Specialist frame this business problem'?

24. A data scientist is building a forecasting model for a retail company by using the most recent 5 years of sales records that are stored in a data warehouse. The dataset contains sales records for each of the company's stores across five commercial regions The data scientist creates a working dataset with StorelD. Region. Date, and Sales Amount as columns. The data scientist wants to analyze yearly average sales for each region. The scientist also wants to compare how each region performed compared to average sales across all commercial regions.

Which visualization will help the data scientist better understand the data trend?

25. A Machine Learning Specialist trained a regression model, but the first iteration needs optimizing. The Specialist needs to understand whether the model is more frequently overestimating or underestimating the target.

What option can the Specialist use to determine whether it is overestimating or underestimating the

target value?

26. A manufacturing company has structured and unstructured data stored in an Amazon S3 bucket A Machine Learning Specialist wants to use SQL to run queries on this data.

Which solution requires the LEAST effort to be able to query this data?

27. A law firm handles thousands of contracts every day. Every contract must be signed. Currently, a lawyer manually checks all contracts for signatures.

The law firm is developing a machine learning (ML) solution to automate signature detection for each contract. The ML solution must also provide a confidence score for each contract page.

Which Amazon Textract API action can the law firm use to generate a confidence score for each page of each contract?

28. A company wants to enhance audits for its machine learning (ML) systems. The auditing system must be able to perform metadata analysis on the features that the ML models use. The audit solution must generate a report that analyzes the metadata. The solution also must be able to set the data sensitivity and authorship of features.

Which solution will meet these requirements with the LEAST development effort?

29. A company uses sensors on devices such as motor engines and factory machines to measure parameters, temperature and pressure. The company wants to use the sensor data to predict equipment malfunctions and reduce services outages.

The Machine learning (ML) specialist needs to gather the sensors data to train a model to predict device malfunctions The ML spoctafst must ensure that the data does not contain outliers before training the ..el.

What can the ML specialist meet these requirements with the LEAST operational overhead?

30. A data scientist at a financial services company used Amazon SageMaker to train and deploy a model that predicts loan defaults. The model analyzes new loan applications and predicts the risk of loan default. To train the model, the data scientist manually extracted loan data from a database. The data scientist performed the model training and deployment steps in a Jupyter notebook that is hosted on SageMaker Studio notebooks. The model's prediction accuracy is decreasing over time.

Which combination of slept in the MOST operationally efficient way for the data scientist to maintain the model's accuracy? (Select TWO.)

31. A company offers an online shopping service to its customers. The company wants to enhance the site’s security by requesting additional information when customers access the site from locations that are different from their normal location. The company wants to update the process to call a machine learning (ML) model to determine when additional information should be requested. The company has several terabytes of data from its existing ecommerce web servers containing the source IP addresses for each request made to the web server. For authenticated requests, the records

also contain the login name of the requesting user.

Which approach should an ML specialist take to implement the new security feature in the web application?

32. A machine learning engineer is building a bird classification model. The engineer randomly separates a dataset into a training dataset and a validation dataset. During the training phase, the model achieves very high accuracy. However, the model did not generalize well during validation of the validation dataset. The engineer realizes that the original dataset was imbalanced.

What should the engineer do to improve the validation accuracy of the model?

33. A company is using a machine learning (ML) model to recommend products to customers. An ML specialist wants to analyze the data for the most popular recommendations in four dimensions. The ML specialist will visualize the first two dimensions as coordinates. The third dimension will be visualized as color. The ML specialist will use size to represent the fourth dimension in the visualization.

Which solution will meet these requirements?

34. A company that promotes healthy sleep patterns by providing cloud-connected devices currently hosts a sleep tracking application on AWS. The application collects device usage information from device users. The company's Data Science team is building a machine learning model to predict if and when a user will stop utilizing the company's devices. Predictions from this model are used by a downstream application that determines the best approach for contacting users.

The Data Science team is building multiple versions of the machine learning model to evaluate each version against the company’s business goals. To measure long-term effectiveness, the team wants to run multiple versions of the model in parallel for long periods of time, with the ability to control the portion of inferences served by the models.

Which solution satisfies these requirements with MINIMAL effort?

35. A Machine Learning Specialist is packaging a custom ResNet model into a Docker container so the company can leverage Amazon SageMaker for training The Specialist is using Amazon EC2 P3 instances to train the model and needs to properly configure the Docker container to leverage the NVIDIA GPUs

What does the Specialist need to do1?

36. A Machine Learning Specialist is working with a large company to leverage machine learning within its products. The company wants to group its customers into categories based on which customers will and will not churn within the next 6 months. The company has labeled the data available to the Specialist.

Which machine learning model type should the Specialist use to accomplish this task?

37. A Machine Learning Specialist is creating a new natural language processing application that processes a dataset comprised of 1 million sentences. The aim is to then run Word2Vec to generate embeddings of the sentences and enable different types of predictions - Here is an example from the dataset

"The quck BROWN FOX jumps over the lazy dog "

Which of the following are the operations the Specialist needs to perform to correctly sanitize and prepare the data in a repeatable manner? (Select THREE)

38. A retail company wants to combine its customer orders with the product description data from its product catalog. The structure and format of the records in each dataset is different. A data analyst tried to use a spreadsheet to combine the datasets, but the effort resulted in duplicate records and records that were not properly combined. The company needs a solution that it can use to combine similar records from the two datasets and remove any duplicates.

Which solution will meet these requirements?

39. Amazon Connect has recently been tolled out across a company as a contact call center The solution has been configured to store voice call recordings on Amazon S3

The content of the voice calls are being analyzed for the incidents being discussed by the call operators Amazon Transcribe is being used to convert the audio to text, and the output is stored on Amazon S3

Which approach will provide the information required for further analysis?

40. A Machine Learning Specialist discover the following statistics while experimenting on a model.

What can the Specialist from the experiments?


 

Achieve More with Amazon SOA-C03 Exam Dumps (V8.02): Pass AWS Certified CloudOps Engineer - Associate Exam with Confidence

Add a Comment

Your email address will not be published. Required fields are marked *