Prepare Effectively with the Most Current DP-100 Dumps (V22.02): Check the DP-100 Free Dumps (Part 2, Q41-Q80) Online

Have you read the DP-100 free dumps (Part 1, Q1-Q40) of V22.02? Our DP-100 dumps (V22.02) are the most current version, covering all the Designing and Implementing a Data Science Solution on Azure exam topics and concepts to ensure success. From these demo questions, you can find that our focused content helps you prepare efficiently without wasting time on irrelevant topics. Trust DumpsBase, our DP-100 exam dumps provide a structured approach to mastering the essential skills required for the certification. Today, we will continue to share the free demo questions to verify our dumps.

Microsoft DP-100 free dumps (Part 2, Q41-Q80) of V22.02 are available below:

1. DRAG DROP

You have a dataset that contains over 150 features. You use the dataset to train a Support Vector Machine (SVM) binary classifier.

You need to use the Permutation Feature Importance module in Azure Machine Learning Studio to compute a set of feature importance scores for the dataset.

In which order should you perform the actions? To answer, move all actions from the list of actions to the answer area and arrange them in the correct order.

2. HOTSPOT

You are creating a machine learning model in Python. The provided dataset contains several numerical columns and one text column. The text column represents a product's category.

The product category will always be one of the following:

✑ Bikes

✑ Cars

✑ Vans

✑ Boats

You are building a regression model using the scikit-learn Python package.

You need to transform the text data to be compatible with the scikit-learn Python package.

How should you complete the code segment? To answer, select the appropriate options in the answer area. NOTE: Each correct selection is worth one point.

3. HOTSPOT

You create a binary classification model to predict whether a person has a disease.

You need to detect possible classification errors.

Which error type should you choose for each description? To answer, select the appropriate options in the answer area. NOTE: Each correct selection is worth one point.

4. You plan to use a Data Science Virtual Machine (DSVM) with the open source deep learning frameworks Caffe2 and Theano. You need to select a pre configured DSVM to support the framework.

What should you create?

5. You are a data scientist creating a linear regression model.

You need to determine how closely the data fits the regression line.

Which metric should you review?

6. You plan to use a Deep Learning Virtual Machine (DLVM) to train deep learning models using Compute Unified Device Architecture (CUDA) computations.

You need to configure the DLVM to support CUDA.

What should you implement?

7. DRAG DROP

You configure a Deep Learning Virtual Machine for Windows.

You need to recommend tools and frameworks to perform the following:

✑ Build deep neural network (DNN) models

✑ Perform interactive data exploration and visualization

Which tools and frameworks should you recommend? To answer, drag the appropriate tools to the correct tasks. Each tool may be used once, more than once, or not at all. You may need to drag the split bar between panes or scroll to view content. NOTE: Each correct selection is worth one point.

8. HOTSPOT

You use Data Science Virtual Machines (DSVMs) for Windows and Linux in Azure.

You need to access the DSVMs.

Which utilities should you use? To answer, select the appropriate options in the answer area. NOTE: Each correct selection is worth one point.

9. You need to select a pre built development environment for a series of data science experiments. You must use the R language for the experiments.

Which three environments can you use? Each correct answer presents a complete solution. NOTE: Each correct selection is worth one point.

10. You plan to create a speech recognition deep learning model.

The model must support the latest version of Python.

You need to recommend a deep learning framework for speech recognition to include in the Data Science Virtual Machine (DSVM).

What should you recommend?

11. You are developing a data science workspace that uses an Azure Machine Learning service.

You need to select a compute target to deploy the workspace.

What should you use?

12. You are creating a new experiment in Azure Machine Learning Studio. You have a small dataset that has missing values in many columns. The data does not require the application of predictors for each column. You plan to use the Clean Missing Data module to handle the missing data.

You need to select a data cleaning method.

Which method should you use?

13. You are determining if two sets of data are significantly different from one another by using Azure Machine Learning Studio.

Estimated values in one set of data may be more than or less than reference values in the other set of data. You must produce a distribution that has a constant Type I error as a function of the correlation.

You need to produce the distribution.

Which type of distribution should you produce?

14. HOTSPOT

You are developing a machine learning, experiment by using Azure.

The following images show the input and output of a machine learning experiment:

Use the drop-down menus to select the answer choice that answers each question based on the information presented in the graphic. NOTE: Each correct selection is worth one point.

15. You are creating a machine learning model.

You need to identify outliers in the data.

Which two visualizations can you use? Each correct answer presents a complete solution. NOTE: Each correct selection is worth one point. NOTE: Each correct selection is worth one point.

16. HOTSPOT

You arc I mating a deep learning model to identify cats and dogs. You have 25,000 color images.

You must meet the following requirements:

• Reduce the number of training epochs.

• Reduce the size of the neural network.

• Reduce over-fitting of the neural network.

You need to select the image modification values.

Which value should you use? To answer, select the appropriate Options in the answer area. NOTE: Each correct selection is worth one point.

17. HOTSPOT

You are performing sentiment analysis using a CSV file that includes 12,000 customer reviews written in a short sentence format. You add the CSV file to Azure Machine Learning Studio and configure it as the starting point dataset of an experiment. You add the Extract N-Gram Features from Text module to the experiment to extract key phrases from the customer review column in the dataset.

You must create a new n-gram dictionary from the customer review text and set the maximum n-gram size to trigrams.

What should you select? To answer, select the appropriate options in the answer area. NOTE: Each correct selection is worth one point.

18. You are analyzing a dataset by using Azure Machine Learning Studio.

YOU need to generate a statistical summary that contains the p value and the unique value count for each feature column.

Which two modules can you users? Each correct answer presents a complete solution. NOTE: Each correct selection is worth one point.

19. You are building a binary classification model by using a supplied training set.

The training set is imbalanced between two classes.

You need to resolve the data imbalance.

What are three possible ways to achieve this goal? Each correct answer presents a complete solution NOTE: Each correct selection is worth one point.

20. You are building recurrent neural network to perform a binary classification.

The training loss, validation loss, training accuracy, and validation accuracy of each training epoch has been provided. You need to identify whether the classification model is over fitted.

Which of the following is correct?

21. You are analyzing a dataset containing historical data from a local taxi company. You arc developing a regression a regression model.

You must predict the fare of a taxi trip.

You need to select performance metrics to correctly evaluate the- regression model.

Which two metrics can you use? Each correct answer presents a complete solution. NOTE: Each correct selection is worth one point.

22. You are evaluating a completed binary classification machine learning model.

You need to use the precision as the valuation metric.

Which visualization should you use?

23. You create a classification model with a dataset that contains 100 samples with Class A and 10,000 samples with Class B

The variation of Class B is very high.

You need to resolve imbalances.

Which method should you use?

24. HOTSPOT

You have a dataset that contains 2,000 rows. You are building a machine learning classification model by using Azure Learning Studio. You add a Partition and Sample module to the experiment.

You need to configure the module.

You must meet the following requirements:

✑ Divide the data into subsets

✑ Assign the rows into folds using a round-robin method

✑ Allow rows in the dataset to be reused

How should you configure the module? To answer, select the appropriate options in the dialog box in the answer area. NOTE: Each correct selection is worth one point.

25. HOTSPOT

You are using the Azure Machine Learning Service to automate hyperparameter exploration of your neural network classification model.

You must define the hyperparameter space to automatically tune hyperparameters using random sampling according to following requirements:

The learning rate must be selected from a normal distribution with a mean value of 10 and a standard deviation of 3.

Batch size must be 16, 32 and 64.

Keep probability must be a value selected from a uniform distribution between the range of 0.05 and 0.1.

You need to use the param_sampling method of the Python API for the Azure Machine Learning Service.

How should you complete the code segment? To answer, select the appropriate options in the answer area. NOTE: Each correct selection is worth one point.

26. You are a data scientist building a deep convolutional neural network (CNN) for image classification.

The CNN model you built shows signs of overfitting.

You need to reduce overfitting and converge the model to an optimal fit.

Which two actions should you perform? Each correct answer presents a complete solution. NOTE: Each correct selection is worth one point.

27. You are with a time series dataset in Azure Machine Learning Studio.

You need to split your dataset into training and testing subsets by using the Split Data module.

Which splitting mode should you use?

28. HOTSPOT

You create an experiment in Azure Machine Learning Studio- You add a training dataset that contains 10.000 rows. The first 9.000 rows represent class 0 (90 percent). The first 1.000 rows represent class 1 (10 percent).

The training set is unbalanced between two Classes. You must increase the number of training examples for class 1 to 4,000 by using data rows. You add the Synthetic Minority Oversampling Technique (SMOTE) module to the experiment.

You need to configure the module.

Which values should you use? To answer, select the appropriate options in the dialog box in the answer area. NOTE: Each correct selection is worth one point.

29. You are performing clustering by using the K-means algorithm.

You need to define the possible termination conditions.

Which three conditions can you use? Each correct answer presents a complete solution. NOTE: Each correct selection is worth one point.

30. You are building a regression model tot estimating the number of calls during an event.

You need to determine whether the feature values achieve the conditions to build a Poisson regression model.

Which two conditions must the feature set contain? I ach correct answer presents part of the solution. NOTE: Each correct selection is worth one point.

31. HOTSPOT

You are performing a classification task in Azure Machine Learning Studio.

You must prepare balanced testing and training samples based on a provided data set.

You need to split the data with a 0.75:0.25 ratio.

Which value should you use for each parameter? To answer, select the appropriate options in the answer area. NOTE: Each correct selection is worth one point.

32. HOTSPOT

You create a binary classification model using Azure Machine Learning Studio.

You must use a Receiver Operating Characteristic (RO C) curve and an F1 score to evaluate the model.

You need to create the required business metrics.

How should you complete the experiment? To answer, select the appropriate options in the dialog box in the answer area. NOTE: Each correct selection is worth one point.

33. HOTSPOT

You are tuning a hyperparameter for an algorithm. The following table shows a data set with different hyperparameter, training error, and validation errors.

Use the drop-down menus to select the answer choice that answers each question based on the information presented in the graphic.

34. You use Azure Machine Learning Studio to build a machine learning experiment.

You need to divide data into two distinct datasets.

Which module should you use?

35. You are developing a hands-on workshop to introduce Docker for Windows to attendees.

You need to ensure that workshop attendees can install Docker on their devices.

Which two prerequisite components should attendees install on the devices? Each correct answer presents part of the solution. NOTE: Each correct selection is worth one point.

36. Your team is building a data engineering and data science development environment.

The environment must support the following requirements:

✑ support Python and Scala

✑ compose data storage, movement, and processing services into automated data pipelines

✑ the same tool should be used for the orchestration of both data engineering and data science

✑ support workload isolation and interactive workloads

✑ enable scaling across a cluster of machines

You need to create the environment.

What should you do?

37. DRAG DROP

You are building an intelligent solution using machine learning models.

The environment must support the following requirements:

✑ Data scientists must build notebooks in a cloud environment

✑ Data scientists must use automatic feature engineering and model building in machine learning pipelines.

✑ Notebooks must be deployed to retrain using Spark instances with dynamic worker allocation.

✑ Notebooks must be exportable to be version controlled locally.

You need to create the environment.

Which four actions should you perform in sequence? To answer, move the appropriate actions from the list of actions to the answer area and arrange them in the correct order.

38. You plan to build a team data science environment. Data for training models in machine learning pipelines will be over 20 GB in size.

You have the following requirements:

✑ Models must be built using Caffe2 or Chainer frameworks.

✑ Data scientists must be able to use a data science environment to build the machine learning pipelines and train models on their personal devices in both connected and disconnected network environments.

✑ Personal devices must support updating machine learning pipelines when connected to a network.

You need to select a data science environment.

Which environment should you use?

39. You are implementing a machine learning model to predict stock prices.

The model uses a PostgreSQL database and requires GPU processing.

You need to create a virtual machine that is pre-configured with the required tools.

What should you do?

40. You are developing deep learning models to analyze semi-structured, unstructured, and structured data types.

You have the following data available for model building:

✑ Video recordings of sporting events

✑ Transcripts of radio commentary about events

✑ Logs from related social media feeds captured during sporting events

You need to select an environment for creating the model.

Which environment should you use?


 

MB-280 Dumps Updated to V9.02 with 121 Practice Questions and Answers - Help You Focus On Essential Areas for Preparation

Add a Comment

Your email address will not be published. Required fields are marked *