Continue to Read MLS-C01 Free Dumps (Part 2, Q41-Q80) Today: Trust the MLS-C01 Dumps (V13.02) Are Reliable for Preparation

You can trust that the MLS-C01 dumps (V13.02) are reliable for your AWS Certified Machine Learning – Specialty exam preparation, enabling your effective strategies for answering questions accurately and efficiently. We have shared the MLS-C01 free dumps (Part 1, Q1-Q40) of V13.02 online, and you can check first to verify the quality. By using current dumps, you can access the most recent MLS-C01 exam questions, ensuring that your preparation aligns with the latest exam expectations. Using the MLS-C01 dumps (V13.02) helps you avoid surprises on exam day and enhances your ability to respond to questions effectively. Come here and continue to read our free dumps today. We are sharing more to help you check the quality again.

Below are our AWS MLS-C01 free dumps (Part 2, Q41-Q80) of V13.02 for checking more:

1. A company wants to forecast the daily price of newly launched products based on 3 years of data for older product prices, sales, and rebates. The time-series data has irregular timestamps and is missing some values.

Data scientist must build a dataset to replace the missing values. The data scientist needs a solution that resamptes the data daily and exports the data for further modeling.

Which solution will meet these requirements with the LEAST implementation effort?

2. A company has an ecommerce website with a product recommendation engine built in TensorFlow. The recommendation engine endpoint is hosted by Amazon SageMaker. Three compute-optimized instances support the expected peak load of the website.

Response times on the product recommendation page are increasing at the beginning of each month. Some users are encountering errors. The website receives the majority of its traffic between 8 AM and 6 PM on weekdays in a single time zone.

Which of the following options are the MOST effective in solving the issue while keeping costs to a minimum? (Choose two.)

3. A retail company is selling products through a global online marketplace. The company wants to use machine learning (ML) to analyze customer feedback and identify specific areas for improvement. A developer has built a tool that collects customer reviews from the online marketplace and stores them in an Amazon S3 bucket. This process yields a dataset of 40 reviews. A data scientist building the ML models must identify additional sources of data to increase the size of the dataset.

Which data sources should the data scientist use to augment the dataset of reviews? (Choose three.)

4. A bank wants to launch a low-rate credit promotion. The bank is located in a town that recently experienced economic hardship. Only some of the bank's customers were affected by the crisis, so the bank's credit team must identify which customers to target with the promotion. However, the credit team wants to make sure that loyal customers' full credit history is considered when the decision is made.

The bank's data science team developed a model that classifies account transactions and understands credit eligibility. The data science team used the XGBoost algorithm to train the model. The team used 7 years of bank transaction historical data for training and hyperparameter tuning over the course of several days.

The accuracy of the model is sufficient, but the credit team is struggling to explain accurately why the model denies credit to some customers. The credit team has almost no skill in data science.

What should the data science team do to address this issue in the MOST operationally efficient manner?

5. A medical device company is building a machine learning (ML) model to predict the likelihood of device recall based on customer data that the company collects from a plain text survey. One of the survey questions asks which medications the customer is taking. The data for this field contains the names of medications that customers enter manually. Customers misspell some of the medication names. The column that contains the medication name data gives a categorical feature with high cardinality but redundancy.

What is the MOST effective way to encode this categorical feature into a numeric feature?

6. A machine learning (ML) engineer is preparing a dataset for a classification model. The ML engineer notices that some continuous numeric features have a significantly greater value than most other features. A business expert explains that the features are independently informative and that the dataset is representative of the target distribution.

After training, the model's inferences accuracy is lower than expected.

Which preprocessing technique will result in the GREATEST increase of the model's inference accuracy?

7. A company is building a new supervised classification model in an AWS environment. The company's data science team notices that the dataset has a large quantity of variables Ail the variables are numeric. The model accuracy for training and validation is low. The model's processing time is affected by high latency The data science team needs to increase the accuracy of the model and decrease the processing.

How it should the data science team do to meet these requirements?

8. A manufacturing company stores production volume data in a PostgreSQL database.

The company needs an end-to-end solution that will give business analysts the ability to prepare data for processing and to predict future production volume based the previous year's production volume. The solution must not require the company to have coding knowledge.

Which solution will meet these requirements with the LEAST effort?

9. A retail company is using Amazon Personalize to provide personalized product recommendations for its customers during a marketing campaign. The company sees a significant increase in sales of recommended items to existing customers immediately after deploying a new solution version, but these sales decrease a short time after deployment. Only historical data from before the marketing campaign is available for training.

How should a data scientist adjust the solution?

10. An e commerce company wants to launch a new cloud-based product recommendation feature for its web application. Due to data localization regulations, any sensitive data must not leave its on-premises data center, and the product recommendation model must be trained and tested using nonsensitive data only. Data transfer to the cloud must use IPsec. The web application is hosted on premises with a PostgreSQL database that contains all the data. The company wants the data to be uploaded securely to Amazon S3 each day for model retraining.

How should a machine learning specialist meet these requirements?

11. An interactive online dictionary wants to add a widget that displays words used in similar contexts. A Machine Learning Specialist is asked to provide word features for the downstream nearest neighbor model powering the widget.

What should the Specialist do to meet these requirements?

12. A retail company stores 100 GB of daily transactional data in Amazon S3 at periodic intervals. The company wants to identify the schema of the transactional data. The company also wants to perform transformations on the transactional data that is in Amazon S3.

The company wants to use a machine learning (ML) approach to detect fraud in the transformed data.

Which combination of solutions will meet these requirements with the LEAST operational overhead? {Select THREE.)

13. A retail company intends to use machine learning to categorize new products A labeled dataset of current products was provided to the Data Science team The dataset includes 1 200 products The labeled dataset has 15 features for each product such as title dimensions, weight, and price Each product is labeled as belonging to one of six categories such as books, games, electronics, and movies.

Which model should be used for categorizing new products using the provided dataset for training?

14. A company is using Amazon Polly to translate plaintext documents to speech for automated

company announcements However company acronyms are being mispronounced in the current documents.

How should a Machine Learning Specialist address this issue for future documents?

15. A real-estate company is launching a new product that predicts the prices of new houses. The historical data for the properties and prices is stored in .csv format in an Amazon S3 bucket. The data has a header, some categorical fields, and some missing values. The company’s data scientists have used Python with a common open-source library to fill the missing values with zeros. The data scientists have dropped all of the categorical fields and have trained a model by using the open-source linear regression algorithm with the default parameters.

The accuracy of the predictions with the current model is below 50%. The company wants to improve the model performance and launch the new product as soon as possible.

Which solution will meet these requirements with the LEAST operational overhead?

16. A machine learning (ML) specialist is running an Amazon SageMaker hyperparameter optimization job for a model that is based on the XGBoost algorithm. The ML specialist selects Root Mean Square Error (RMSE) as the objective evaluation metric.

The ML specialist discovers that the model is overfitting and cannot generalize well on the validation data. The ML specialist decides to resolve the model overfitting by using SageMaker automatic model tuning (AMT).

Which solution will meet this requirement?

17. Which of the following metrics should a Machine Learning Specialist generally use to compare/evaluate machine learning classification models against each other?

18. A company is running an Amazon SageMaker training job that will access data stored in its Amazon S3 bucket A compliance policy requires that the data never be transmitted across the internet.

How should the company set up the job?

19. A global bank requires a solution to predict whether customers will leave the bank and choose another bank. The bank is using a dataset to train a model to predict customer loss. The training dataset has 1,000 rows. The training dataset includes 100 instances of customers who left the bank.

A machine learning (ML) specialist is using Amazon SageMaker Data Wrangler to train a churn prediction model by using a SageMaker training job. After training, the ML specialist notices that the model returns only false results. The ML specialist must correct the model so that it returns more accurate predictions.

Which solution will meet these requirements?

20. A data scientist is training a large PyTorch model by using Amazon SageMaker. It takes 10 hours on average to train the model on GPU instances. The data scientist suspects that training is not converging and that resource utilization is not optimal.

What should the data scientist do to identify and address training issues with the LEAST development effort?

21. A Data Scientist needs to analyze employment data. The dataset contains approximately 10 million

observations on people across 10 different features. During the preliminary analysis, the Data Scientist notices that income and age distributions are not normal. While income levels shows a right skew as expected, with fewer individuals having a higher income, the age distribution also show a right skew, with fewer older individuals participating in the workforce.

Which feature transformations can the Data Scientist apply to fix the incorrectly skewed data? (Choose two.)

22. A machine learning (ML) specialist wants to create a data preparation job that uses a PySpark script with complex window aggregation operations to create data for training and testing. The ML specialist needs to evaluate the impact of the number of features and the sample count on model performance.

Which approach should the ML specialist use to determine the ideal data transformations for the model?

23. A manufacturer is operating a large number of factories with a complex supply chain relationship where unexpected downtime of a machine can cause production to stop at several factories. A data scientist wants to analyze sensor data from the factories to identify equipment in need of preemptive maintenance and then dispatch a service team to prevent unplanned downtime. The sensor readings from a single machine can include up to 200 data points including temperatures, voltages, vibrations, RPMs, and pressure readings.

To collect this sensor data, the manufacturer deployed Wi-Fi and LANs across the factories. Even though many factory locations do not have reliable or high-speed internet connectivity, the manufacturer would like to maintain near-real-time inference capabilities.

Which deployment architecture for the model will address these business requirements?

24. A manufacturing company has a large set of labeled historical sales data The manufacturer would like to predict how many units of a particular part should be produced each quarter.

Which machine learning approach should be used to solve this problem?

25. A data scientist is building a linear regression model. The scientist inspects the dataset and notices that the mode of the distribution is lower than the median, and the median is lower than the mean.

Which data transformation will give the data scientist the ability to apply a linear regression model?

26. A machine learning (ML) specialist uploads 5 TB of data to an Amazon SageMaker Studio environment. The ML specialist performs initial data cleansing. Before the ML specialist begins to train a model, the ML specialist needs to create and view an analysis report that details potential bias in the uploaded data.

Which combination of actions will meet these requirements with the LEAST operational overhead? (Choose two.)

27. A Data Scientist is developing a machine learning model to classify whether a financial transaction is fraudulent. The labeled data available for training consists of 100,000 non-fraudulent observations and 1,000 fraudulent observations.

The Data Scientist applies the XGBoost algorithm to the data, resulting in the following confusion matrix when the trained model is applied to a previously unseen validation dataset. The accuracy of the model is 99.1%, but the Data Scientist needs to reduce the number of false negatives.

Which combination of steps should the Data Scientist take to reduce the number of false negative predictions by the model? (Choose two.)

28. An ecommerce company is automating the categorization of its products based on images. A data scientist has trained a computer vision model using the Amazon SageMaker image classification algorithm. The images for each product are classified according to specific product lines. The accuracy of the model is too low when categorizing new products. All of the product images have the same dimensions and are stored within an Amazon S3 bucket. The company wants to improve the model so it can be used for new products as soon as possible.

Which steps would improve the accuracy of the solution? (Choose three.)

29. A Machine Learning Specialist is using an Amazon SageMaker notebook instance in a private subnet of a corporate VPC. The ML Specialist has important data stored on the Amazon SageMaker notebook instance's Amazon EBS volume, and needs to take a snapshot of that EBS volume. However the ML Specialist cannot find the Amazon SageMaker notebook instance's EBS volume or Amazon EC2 instance within the VPC.

Why is the ML Specialist not seeing the instance visible in the VPC?

30. A data scientist for a medical diagnostic testing company has developed a machine learning (ML) model to identify patients who have a specific disease. The dataset that the scientist used to train the model is imbalanced. The dataset contains a large number of healthy patients and only a small number of patients who have the disease. The model should consider that patients who are incorrectly identified as positive for the disease will increase costs for the company.

Which metric will MOST accurately evaluate the performance of this model?

31. A Machine Learning Specialist is building a logistic regression model that will predict whether or not a person will order a pizza. The Specialist is trying to build the optimal model with an ideal classification threshold.

What model evaluation technique should the Specialist use to understand how different classification thresholds will impact the model's performance?

32. A financial services company is building a robust serverless data lake on Amazon S3.

The data lake should be flexible and meet the following requirements:

* Support querying old and new data on Amazon S3 through Amazon Athena and Amazon Redshift Spectrum.

* Support event-driven ETL pipelines.

* Provide a quick and easy way to understand metadata.

Which approach meets trfese requirements?

33. A credit card company wants to build a credit scoring model to help predict whether a new credit card applicant will default on a credit card payment. The company has collected data from a large number of sources with thousands of raw attributes. Early experiments to train a classification model revealed that many attributes are highly correlated, the large number of features slows down the training speed significantly, and that there are some overfitting issues.

The Data Scientist on this project would like to speed up the model training time without losing a lot of

information from the original dataset.

Which feature engineering technique should the Data Scientist use to meet the objectives?

34. A company provisions Amazon SageMaker notebook instances for its data science team and creates Amazon VPC interface endpoints to ensure communication between the VPC and the notebook instances. All connections to the Amazon SageMaker API are contained entirely and securely using the AWS network. However, the data science team realizes that individuals outside the VPC can still connect to the notebook instances across the internet.

Which set of actions should the data science team take to fix the issue?

35. A data scientist is developing a pipeline to ingest streaming web traffic data. The data scientist needs to implement a process to identify unusual web traffic patterns as part of the pipeline. The patterns will be used downstream for alerting and incident response. The data scientist has access to unlabeled historic data to use, if needed.

The solution needs to do the following:

Calculate an anomaly score for each web traffic entry.

Adapt unusual event identification to changing web patterns over time.

Which approach should the data scientist implement to meet these requirements?

36. A machine learning (ML) engineer is using Amazon SageMaker automatic model tuning (AMT) to optimize a model's hyperparameters. The ML engineer notices that the tuning jobs take a long time to run. The tuning jobs continue even when the jobs are not significantly improving against the objective metric.

The ML engineer needs the training jobs to optimize the hyperparameters more quickly.

How should the ML engineer configure the SageMaker AMT data types to meet these requirements?

37. A network security vendor needs to ingest telemetry data from thousands of endpoints that run all over the world. The data is transmitted every 30 seconds in the form of records that contain 50 fields. Each record is up to 1 KB in size. The security vendor uses Amazon Kinesis Data Streams to ingest the data. The vendor requires hourly summaries of the records that Kinesis Data Streams ingests. The vendor will use Amazon Athena to query the records and to generate the summaries. The Athena queries will target 7 to 12 of the available data fields.

Which solution will meet these requirements with the LEAST amount of customization to transform and store the ingested data?

38. A data scientist is training a text classification model by using the Amazon SageMaker built-in BlazingText algorithm. There are 5 classes in the dataset, with 300 samples for category A, 292 samples for category B, 240 samples for category C, 258 samples for category D, and 310 samples for category E.

The data scientist shuffles the data and splits off 10% for testing. After training the model, the data scientist generates confusion matrices for the training and test sets.

What could the data scientist conclude form these results?

39. A machine learning (ML) engineer is creating a binary classification model. The ML engineer will use the model in a highly sensitive environment.

There is no cost associated with missing a positive label. However, the cost of making a false positive inference is extremely high.

What is the most important metric to optimize the model for in this scenario?

40. A data scientist has been running an Amazon SageMaker notebook instance for a few weeks. During this time, a new version of Jupyter Notebook was released along with additional software updates. The security team mandates that all running SageMaker notebook instances use the latest security and software updates provided by SageMaker.

How can the data scientist meet these requirements?


 

Pass the AWS Certified Data Engineer - Associate (DEA-C01) Exam By Using the DEA-C01 Dumps (V11.02): Read DEA-C01 Free Dumps (Part 1, Q1-Q40) First

Add a Comment

Your email address will not be published. Required fields are marked *